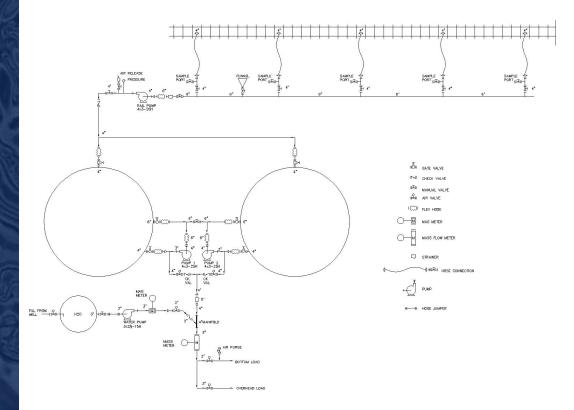

Designing an Efficient Liquid Plant

Requires Selecting the Right Equipment Components

Design with Direction


Develop a plan Work from a flow diagram Simple Flow Diagram Cad designed diagram Allow a realistic time frame

9/2/2010

Design with Direction

Develop a plan
 Work from a flow diagram
 Cad designed diagram
 Allow a realistic time frame

Common Themes

Material of construction
Product mix
System capacity
Quality control
Labor
Available power

Storage Requirements

Turnover Products Seasonal storage Secondary Containment

Tanks Size Shape **Material** Fittings Foundation

URRENT

Plumbing

Size
Suction vs. Discharge
2" to 150 gpm
3" to 300 gpm
4" to 450 gpm
6" to 800 gpm
Upsize long runs

Selection Criteria

Flow characteristics
Corrosion resistance
Strength
Cost of Installation
Flexibility for changes
Weld or thread?

STATE BORFACENT

FRICTION LOSSES THROUGH SCREW PIPE FITTINGS IN TERMS OF EQUIVALENT LENGTHS OF STANDARD PIPE

Nominal Pipe Size Inches	Actual Inside Diameter Inches	Gate Valve	Long-Sweep Elbow or on Run of Standard Tee	Medium— Sweep Elbow or on Run of Tee Reduced in Size ½	Standard Elbow or on Run of Tee Reduced in Size 1/2	Angle Valve	Close Return Bend	Tee Through Side Outlet	Globe Valve
Factor of	Resistance	0.25	0.33	0.42	0.67	0.90	1.00	1.33	2.00
¥ ¥	0.662 0.824 1.049 1.38 1.61	0.335 0.475 0.640 0.902 1.09	0.442 0.627 0.844 1.19 1.43	0.56 0.79 1.07 1.51 1.83	0.89 1.27 1.72 2.42 2.92	1.20 1.71 2.30 3.24 3.92	1.34 1.90 2.56 3.61 4.36	1.79 2.52 3.40 4.80 5.79	2.68 3.80 5.12 7.22 8.72
ж	2.06 2.46 3.06 4.026 5.047	1.49 1.86 2.46 3.44 4.57	1.96 2.46 3.25 4.53 6.00	2.50 3.13 4.11 5.77 7.68	3.99 5.00 6.66 9.22 12.20	5.36 6.72 8.87 12.37 16.47	5.96 7.47 9.86 13.70 18.30	7.92 9.93 13.11 18.28 24.33	11.92 14.94 19.72 27.50 36.60
	6.065 7.024 7.981 10.020 12.090	5.72 6.90 8.10 10.70 12.50	7.55 9.10 10.70 14.10 17.80	9.61 11.60 13.60 17.97 22.68	15.30 18.50 21.71 28.70 36.28	20.61 24.84 29.16 38.52 48.60	22.90 27.60 32.40 42.80 54.00	30.45 36.70 43.09 56.92 71.82	45.00 55.20 64.80 85.60 108.00

1/2" Pipe		Pipe	14" Pipe		l" Pipe		1%" Pipe		11/2" Pipe		2" Pipe		21/2" Pipe		3" Pipe		4" Pipe		5" Pipe		6" Pi	
U.S. Gals. per min.	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	
2 4 6 8 10	2.10 4.21 6.31 8.42 10.52	7.4 27.0 57.0 98.0 147.0	1.20 2.41 3.61 4.81 6.02	1.9 7.0 14.7 25.0 38.0	1.49 2.23 2.98 3.72	2.14 4.55 7.8 11.7	.86 1.29 1.72 2.14				.61	 .20 .33 .50						·····		· · · · · · · · · · · · · · · · · · ·		
12 15 18 20 25 30 35				53.0 80.0 108.2 136.0		16.4 25.0 35.0 42.0 64.0 89.0 119.0	2.57 3.21 3.86 4.29 5.36 6.43 7.51	4.3 6.5 9.1 11.1 16.6 23.0 31.2	2.83 3.15 3.80 4.72	4.24 5.20 7.30 11.0	1.84 2.04 2.55 3.06	1.08 1.49 1.82 2.73 3.84	1.18 1.31 1.63 1.96	.36 .50 .61 .92 1.29	.82 .91 1.13 1.36	.15 .21 .25 . 38 .54	.51 .64 .77	.06 .09 .13 .17				
40 45 50 55 60 65				· · · · · · · · · · · · · · · · · · ·	13.02	152.0	8.58 9.65 10.72 11.78 12.87 13.92	40.0 50.0 60.0 72.0 85.0 99.7	6.30 7.08 7.87 8.66 9.44 10.23	18.8 23.2 28.4 34.0 39.6 45.9	4.08 4.60 5.11 5.62 6.13 6.64	6.6 8.2 9.9 11.8 13.9 16.1	2.94 3.27 3.59 3.92	4.01	2.45	1.15 1.38 1.58 1.92	1.28 1.41 1.53	.22 .28 .34 .41 .47 .53	.90 .98		.57	
70 75 80 85 90 95						· · · · · · · · · · · · · · · · · · ·	15.01 16.06 17.16 18.21 19.30	113.0 129.0 145.0 163.8 180.0	11.02 11.80 12.59 13.38 14.71 14.95	53.0 60.0 68.0 75.0 84.0 93.0	7.15 7.66 8.17 8.68 9.19 9.70	18.4 20.9 23.7 26.5 29.4 32.6	5.23 5.56 5.88	7.1 7.9 8.1 9.8	3.33 3.63 3.78 4.09	3.00 3.28 3.54 4.08	2.04 2.17 2.30	.63 .73 .81 .91 1.00 1.12	1.22 1.31 1.39 1.47	.21 .24 .27 .31 .34 .38	.84 .91 .90 1.02	
100 110 120 130 140 150	•								15.74 17.31 18.89 20.46 22.04	102.0 122.0 143.0 166.0 190.0	10.21 11.23 12.25 13.28 14.30 15.32	35.8 42.9 50.0 58.0 67.0 76.0	7.18 7.84 8.48 9.15 9.81	14.5 16.8 18.7 22.3	5.00 5.45 5.91 6.35	6.0 7.0 8.1 9.2	2.81 3.06 3.31 3.57	1.17	1.79 1.96 2.12 2.29	.67	1.2 1.3 1.4 1.5	
160 170 180 190 200 220	•										16.34 17.36 18.38 19.40 20.42 22.47	86.0 96.0 107.0 118.0 129.0 154.0	14.38	43.1	7.71 8.17 8.63 9.08 9.99	13.3 14.0 15.5 17.8 21.3	4.33 4.60 4.84 5.11	3.61 4.01 4.4	2.94 3.10 3.27	.98 1.08 1.22 1.35 1.48 1.77	1.9 2.0 2.1 2.2	
240 260 280 300 320 340	-										24.51 26.55	182.0	15.69 16.99 18.30 19.61 20.92 22.22	61.0 70.0 81.0 92.0 103.0	10.89 11.80 12.71 13.62 14.52 15.43	25.1 29.1 33.4 38.0 42.8 47.9	7.15	7.2 8.2 9.3 10.5	4.58	2.41 2.77 3.14 3.54	3.1	
360 380 400 450 500 550													23.53 24.84 26.14	128.0 142.0 156.0	16.34 17.25 18.16 20.40 22.70	53.0 59.0 65.0 78.0	9.19 9.69 10.21 11.49 12.77 14.04	14.0 16.0 19.8 24.0	6.19 6.54 7.35 8.17	5.4 6.7 8.1	4.5	
600 650 760 750 800 850															27.23	137.0	15.32 16.59 17.87 19.15 20.42	33.7 39.0 44.9 51.0 57.0	9.80 10.62 11.44 12.26 13.07	15.1 17.2 19.4	7.3 7.9 8.5 9.0	

FRICTION LOSS OF WATER IN FEET PER 100 FEET LENGTH OF PIPE. BASED ON WILLIAMS & HAZEN FORMULA USING CONSTANT 100. SIZES OF STANDARD PIPE IN INCHES

 Doubling the diameter of a pipe increases its capacity four times

Plumbing Materials

UTPME

Hose PVC Mild steel Stainless steel Poly Combinations

Cost Comparison Plumbing Materials

Material	3" Pipe	4" Pipe	3" Elbow	4" Elbow	Durability
Polyethylene	\$3.00	\$5.00	\$17.00	\$24.00	Lifetime
Poly Helix EPDM Lined Hose	\$4.00	\$6.50		TANK	3-4 years
Sch80PVC	\$5.00	\$7.00	\$9.00	\$14.00	4-6 years
Rubber wire Reinforcement	\$5.00	\$7.80		SI	6-8 years
Steel Pipe	\$11.00	\$16.50	\$19.00	\$40.00	10-18 years
Sch10SS Pipe	\$16.00	\$23.00	\$23.00	\$33.00	Lifetime

System using hose and prefabricated stainless steel fittings.

Pumps and Plumbing

TIPME

System Capacity
Load size
Time
Plan for growth

Don't Get Stuck with the Wrong Pump!

Pump Selection Type Self-priming centrifugal Straight centrifugal Positive displacement Capacity (not size) Material Seals & packing

STITLE AURRAY

Self Priming

Non-

Straight Centrifugal

CARDING THE ROOM

STILLER

45

W216 466

Positive Displacement

Pump Performance

URRAY UIPMEI

Design Impeller • Size • Shape Speed

Open vs. closed impeller design pumps

Open

The fluid enters the eye of the impeller where the turning vanes add energy to the fluid and direct it to the discharge nozzle. A close clearance between the vanes and the pump volute, or back plate in a few designs, prevents most of the fluid from recirculating back to the eye of the impeller.

(L) shows the leading edge or higher-pressure side of the impeller. (T) describes the trailing edge of the impeller

The fluid enters the eye of the impeller where the vanes add energy to the fluid and direct it to the discharge nozzle. There is no impeller to volute or back plate clearance to set. Wear rings restrict the amount of discharge fluid that recirculates back to the suction side of the impeller. When this wear ring clearance becomes excessive the wear rings must be replaced.

Advantages and Disadvantages

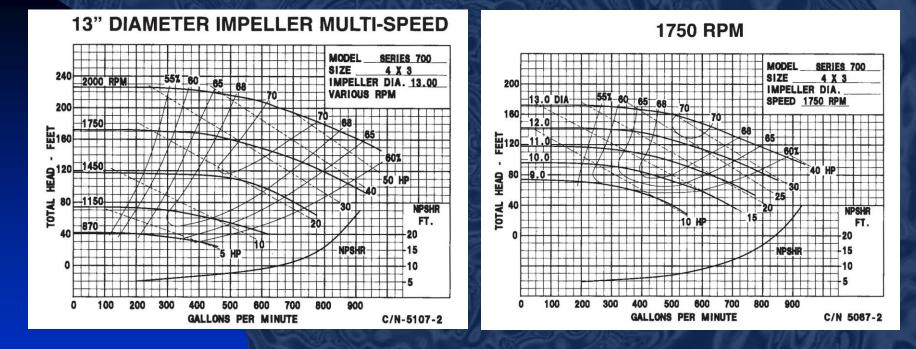
Closed Impeller

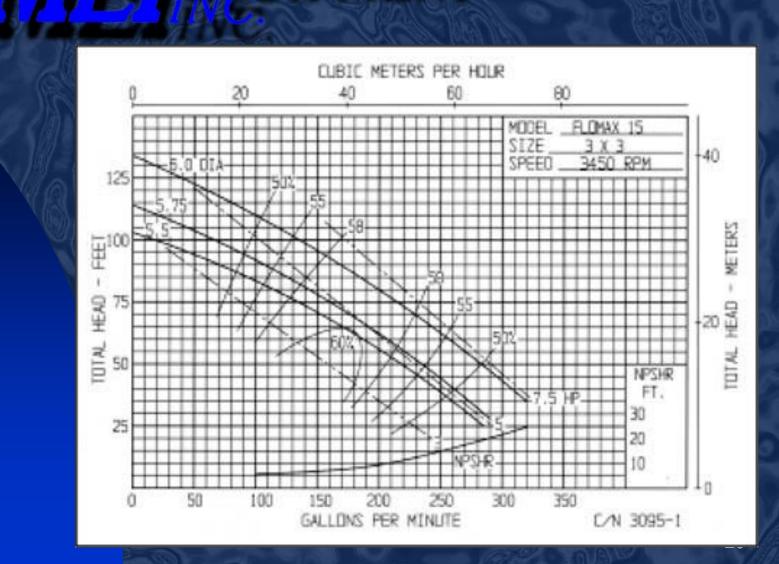
- The impeller can clog if you pump solids or "stringy material". It's difficult to clean out these solids from between the shrouds and vanes.
- The impeller is difficult to cast because the internal parts are hidden and hard to inspect for flaws
- The impeller is difficult to modify to improve its performance

- No impeller adjustment is possible. Once the wear ring clearances doubles they have to be replaced. This means the pump had to be disassembled just to check the status of the wear rings.
- The closed impeller is a more complicated and expensive design not only because of the impeller, but the additional wear rings are needed.

Advantages and Disadvantages

Open Impeller


- Efficiency can be maintained through impeller clearance adjustment.
- The impeller can be adjusted to compensate for wear and stay close to its best efficiency. No pump disassembly is necessary.
- The open impeller is less likely to clog with solids, but if it does, it is easy to clean.
- The open impeller has all the parts visible, so it's easy to inspect for wear or damage
- The pump is less costly to build with a simple open impeller design.
- The vanes can easily be cut or filed to increase the capacity.
- You have a greater range of specific speed choices.


Pump Curve

REME

Flow rate vs. head Horsepower NPSH Efficiency

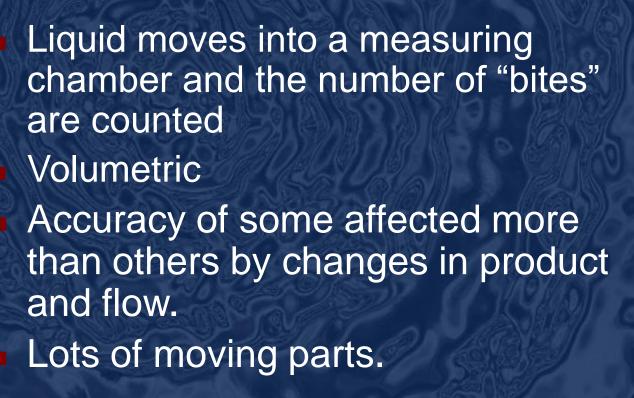
9/2/2010

Pump & Plumbing Examples Good and Not So Good

OUIPMEI

Don't Let Your Plumbing Get Out of Control!

STATE ROUTPMENT


Measurement

Scales Meters • Flow rate • Accuracy • Quality control • Custody transfer

Types of Meters

Positive Displacement Turbine/Squirrel cage Electromagnetic Coriolis Mass Flow

Positive Displacement

9/2/2010

h'

Turbine Meters

Volumetric Liquid moving through meter causes rotor to turn in proportion to flow rate Straight pipe requirement Inlet 20X pipedia – outlet 10X pipedia Changes in flow rate and viscosity can have large effect on accuracy Some moving parts

"Mag" Meters

Volumetric.

Measures velocity of liquid through a tube of known area.

Liquid must be electrically conductive. Highly accurate across large range of flow rates and viscosities. Less straight pipe needed.

No moving parts to wear out.

Mass Flow Meters

Measures mass or weight. Some accurate to .10% of flow rate. Doesn't care what liquid it's measuring. High turndown ratio. Only moving parts are oscillating tubes.

Calibrate!

All meters can lose calibration over time Mechanical types more susceptible to wear

- Flow rate
- Compatibility

 If calibrating volumetric meters by weight, know the true density of the product.

Controlling the Flow

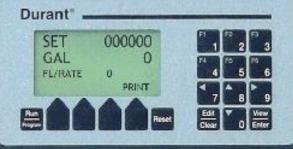
JIPMEI

Valves Manifolds Control systems

Valve Selection

UTPME

Style Construction Operation


Types of Valves

Ball valves Butterfly valves Gate valves Check valves

Control Systems

WATER	FEATILIZEA
	0000
0	

Manual Actuated valves Presets Automation

MEI Fusion Preset

Easy to read LCD Display, even in bright sunlight Print function with time & date Adjustable pre-act, compensates for product over-runs Corrosion resistant, NEMA 4X, FRP – 12:X14" enclosure Pre-wired, easy to install Compatible with most meters Direct upgrade replaceable for existing MEI **Preset Controls** Programmable Display Total Products ID's Flow Rate Preset

Control Systems

Manual Actuated valves Presets Automation

Mix Systems

Custom design – purpose built Tons per day required • small custom blends Truck load quantities Push products into mix tanks Rely on plant pump to draw products 1,000 tons per day – sure all liquids pumped & metered – use dump pit

Organize your work, utilize your plan and you'll avoid making a mess!

Thank you